
Request modes

Data Loading

Request mode: GET
GET parameters:
POST parameters:

In data loading mode connector need to return all records from relate table|collection|query. Basically it is the request for "SELECT *" query.

Data Loading, with sorting

Request mode: GET
GET parameters: ?dhx_sort[{index}]={mode}
POST parameters:

Connector need to return all records from relate table|collection|query sorted by provided parameter Query can contain multiple dhx_sort
parameters

{index} - index or name of field for which sorting need to be applied
{mode} - "asc" or "desc"

Data Loading, with filtering

Request mode: GET
GET parameters: ?dhx_filter[{index}]={filter}
POST parameters:

Connector need to return all records from relate table|collection|query sorted by provided parameter Query can contain multiple dhx_filter
parameters

{index} - index or name of field for which filtering need to be applied
{filter} - filter value

By default filter applied as "LIKE %filter%" If mutliple filters provided - they combined by AND logic

Partial Data Loading

Request mode: GET
GET parameters: ?posStart={start}&count={count}
POST parameters:

Connector need to return {count} of records starting from position {start}

{count} - count of requested records
{start} - index of first requested record

This is equal to usage of LIMIT construction in MySQL

Combined data loading

All above modes can be combined

?dhx_sort[Name]=asc&dhx_sort[Surname]=asc&dhx_filter[Country]=Ru$dhx_filter[Status]=1&posStart=100&count=10

Select records 100-110, where Country contains "RU" and Status contains "1", sorted by Name and Surname

?dhx_sort[0]=asc&dhx_sort[1]=asc&dhx_filter[2]=Ru$dhx_filter[3]=1&posStart=100&count=10

Same as above, but instead of the names, field indexes are used. Indexes are related to the order of parameters in render_table or equal command
on the server side.

Form loading

This mode is used only by Form connector, and not necessary for other types

Request mode: GET
GET parameters: ?id={id}

POST parameters:

Connector need to return single record from related table|collection|query, with record.id equal to {id}

Autocomplete mode

This mode is used only by Combo connector, and not necessary for other types

Request mode: GET
GET parameters: ?mask={filter}
POST parameters:

Connector need to return all records from relate table|collection|query Filtering must be done agains the main data field of the connector. (combo
filter has only one data field)

{filter} - filter value

By default filter applied as "LIKE %filter"

Data saving modes

Simple insert

Request mode: POST
GET parameters: ?!nativeeditor_status=inserted
POST parameters: id={id}&key1=value1&key2=value2...&keyN=valueN

Server side code need to insert new record in the database, id provided from client side can (and preferable must) be ignored. Values for different
fields provided as key=value pairs in the POST request

Response

Content-type: text/xml
<data>
 <action sid='{id}' tid='{realid}' type='insert'></action>
</data>

Where

{id} - id from incoming requested
{realid} - id of new record in the database

If operation can't be executed, response must look as

<data>
 <action sid='{id}' tid='{id}' type='error'></action>
</data>

Simple update

Request mode: POST
GET parameters: ?!nativeeditor_status=updated
POST parameters: id={id}&key1=value1&key2=value2...&keyN=valueN

Server side code need to update record in the database Id and values for different fields provided as key=value pairs in the POST request

Response

Content-type: text/xml
<data>
 <action sid='{id}' tid='{id}' type='update'></action>
</data>

Where

{id} - id from incoming requested

If operation can't be executed, response must look as

<data>
 <action sid='{id}' tid='{id}' type='error'></action>
</data>

Simple delete

Request mode: POST
GET parameters: ?!nativeeditor_status=deleted
POST parameters: id={id}

Server side code need to delete record from a database

Response

Content-type: text/xml
<data>
 <action sid='{id}' tid='{id}' type='delete'></action>
</data>

Where

{id} - id from incoming requested

If operation can't be executed, response must look as

<data>

 <action sid='{id}' tid='{id}' type='error'></action>
</data>

Grid and Tree specific parameter names

Grid, TreeGrid

gr_id - id of record (used instead of "id")
gr_pid - id of parent record (for treegrid only)
c0 - value of first column
c1 - value of second column
...
cN - value of Nth column

Tree

tr_id - id of tree item
tr_pid - id of parent item
tr_order - index of item in the parent branch
tr_text - text value of tree item

Complex saving

Client side can issue multiple saving operation in single request It can be detected by checking POST["ids"] parameter, if it exists - we are in the
complex saving mode.

POST["ids"] contains the comma separated list of records ID

var list = POST["ids"].split(",")
for (var i=0; i<list.length; i++){
 var id = list[i];
 var mode = POST[id+"_!nativeeditor_status"];
 var value1 = POST[id+"_key1"];
 ...
 //exec operation, same as for simple update mode
}

Response

Response is similar to the simple mode, but will contain multiple "action" tags, one for each id in the "ids" collection

<data>
 <action sid='112312312' tid='12' type='insert'></action>
 <action sid='4' tid='4' type='update'></action>
 ...
</data>

Simple form operations (dhtmlx Touch)

Loading

Request mode: GET
GET parameters: ?action=get&id={id}
POST parameters:

Return info about single record, which is selected by provided {id}

Saving

insert

Request mode: GET
GET parameters: ?action=insert
POST parameters: key1=value1&key2=value2...keyN=valueN

Response

Content-type: text/plain
true\n{new_id}

Error response

Content-type: text/plain
Error description

Update

Request mode: GET
GET parameters: ?action=update
POST parameters: id={id},key1=value1&key2=value2...keyN=valueN

Response

Content-type: text/plain
true

Error response

Content-type: text/plain
Error description

Delete

Request mode: GET
GET parameters: ?action=delete
POST parameters: id={id}

Response

Content-type: text/plain
true

Error response

Content-type: text/plain
Error description

Data loading response

Grid

Content-type: text/xml
<rows>
 //foreach record
 <row id="{id}">
 //foreach field
 <cell>{fieldvalue}</cell>
 //end foreach
 </row>
 //end foreach
</rows>

Grid in dyn. load mode

Content-type: text/xml
<rows pos="{start}">
...continue the same as for normal Grid...

TreeGrid

Content-type: text/xml
<rows>
 //foreach record
 <row id="{id}">
 //foreach field
 <cell>{fieldvalue}</cell>
 //end foreach
 //foreach subrow
 <row id="{id}">
 ...continue recursively...
 </row>
 //endforeach
 </row>
 //end foreach
</rows>

TreeGrid in dyn. load mode

Content-type: text/xml
<rows parent="{parent_id}">
...continue the same as for normal TreeGrid...

Tree

Content-type: text/xml
<tree>
 //foreach record
 <item id="{id}" text="{text}">
 //foreach subitem
 <item id="{id}" text="{text}">
 ...continue recursively...
 </item>
 //endforeach
 </item>
 //end foreach
</tree>

Tree in dyn. load mode

Content-type: text/xml
<tree id="{parent_id}">
...continue the same as for normal TreeGrid...

Combo

Content-type: text/xml
<complete>
 //foreach record
 <option value='{id}'>
 {text}
 </option>
 //end foreach
</complete>

Dataview, Chart, Datastore, Touch

Content-type: text/xml
<data>
 //foreach item
 <item id="{id}">
 //foreach field
 <{fieldname}>
 {fieldvalue}
 </{fieldname}>
 //endforeach
 </item>
 //end foreach
</data>

Scheduler

Content-type: text/xml
<data>
 //foreach item
 <item id="{id}">
 <start_date>{start_date}</start_date>
 <end_date>{end_date}</end_date>
 <text>{text}</text>
 //foreach custom field
 <{fieldname}>
 {fieldvalue}
 </{fieldname}>
 //endforeach
 </item>
 //end foreach
</data>

Json connector for Touch and datastore

Content-type: text/plain
[
 //for each record
 {
 //for each field
 {fielname}:"{fielvalue}",
 //end for each
 id:"{id}"
 }
 //end for each
]

Recomendations for server side

Connector types

There are next types of connectors available in php edition

GridConnector
has custom parameter names during saving (check above)
can be used with dyn. loading mode (loading only visible ranges of data)

TreeGridConnector
has custom parameter names during saving (check above)
can be used with dyn. loading mode (loading only single branch)

TreeConnector
has custom parameter names during saving (check above)
can be used with dyn. loading mode (loading only single branch)

ComboConnector
has special autocomplete mode (check above)

FormConnector
has speicial single record loading mode (check above)

DataViewConnector
ChartConnector
DataConnector
SchedulerConnector
JSONDataConnector

output data as json, not as xml

If you target DHTMLX3 you need to implement GridConnector, TreeGridConnector, TreeConnector, ComboConnector, FormConnector,
DataViewConnector, ChartConnector, SchedulerConnector

If you target DHTMLX Touch you need to implement only DataConnector and JSONDataConnector

Configuration options

Connectors must allow two main rendering modes - render from the table - render from the sql query

During connector initialization user can select - master table|query - id field - data fields - parent_id (for tree and treegrid)

Events

There must be some way to assign custom logic to the key points of data processing. Without such ability connector will be hardly customizable

Data loading

BeforeRender - for each record, before converting to xml - allows to define custom rules
BeforeSorting, BeforeFiltering - allows to modify sorting|filtering parameters

Data Saving

BeforeProcessing - allows to modify incoming data, or block operation
AfterProcessing - allows to make some post-operation update, or include custom data in response

