
Runtime grouping allows to change the look of data in the grid dynamically, re-organizing it
for better presentation of information.
By default, grouping allows the user to show only grouping-key and count of items in the
group.

<script>
grid.groupBy(2);

</script>

But, in many cases, such look and feel is not enough. The group contains a value that may
be aggregated and shown as some kind of total.
The second parameter of groupBy() command allows to define the mask used by group-
line:

<script>

grid.groupBy(2,["#stat_max","#title","","#stat_total","","#cspan","#cspan","#cspan"]);
</script>

The second parameter of groupBy() command is an array, each value of which is mapped
to the related column.
The possible values are:

• title - will be used for group-key;
• cspan - organize colspan with a sibling cell (the same as in cspan in header);
• stat_total - calculates total of values for the group;
• stat_max - calculates maximum value in the group;
• stat_min - calculates minimum value in the group;
• stat_average - calculates average value in the group;
• stat_count - calculates count of records in the group.

Stat-based values are rendered using the same exCell as the related column. This allows to



use setNumberFormat() against them (when the source column is of ron|edn type).

In normal mode, the grid allows to redefine the text of group-row with the help of
grid.customGroupFormat:

<script>
grid.groupBy(2);
grid.customGroupFormat=function(name,count){

return name+" :: found " +count+ " records";
}

</script>

It is possible to add aggregation values to such custom defined group-line as well. It can be
done through groupStat() method that returns the result of aggregation for the group and
accepts the following parameters:

• group name;
• column index;
• name of stat operation (the same as markers above).

<script>
grid.groupBy(2);
grid.customGroupFormat=function(name,count){

return name+", Max sales="+grid.groupStat(name,3,"stat_max")+",
total="+grid.groupStat(name,3,"stat_total");

}
</script>

If all stated above is still not enough, there is a way to iterate through all rows in some



group and calculate any custom math.
It can be done using built-in iterator:

<script>
grid.forEachRowInGroup(name,function(id){

do_something_with_row(id);
});

</script>

The parameter name is the key-value of the group.


